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Preference behaviors are often established during early life, but
the underlying neural circuit mechanisms remain unknown. Adapt-
ing a uniquenestingbehavior assay,we confirmeda “critical period”
for developing music preference in C57BL/6 mice. Early music expo-
sure between postnatal days 15 and 24 reversed their innate bias for
silent shelter, which typically could not be altered in adulthood. In-
stead, exposing adult mice treated acutely with valproic acid or car-
rying a targeted deletion of the Nogo receptor (NgR−/−) unmasked
a strong plasticity of preference consistent with a reopening of the
critical period as seen in other systems. Imaging of cFos expression
revealed a prominent neuronal activation in response to the exposed
music in the prelimbic and infralimbic medial prefrontal cortex only
under conditions of open plasticity. Neither behavioral changes nor
selective medial prefrontal cortex activation was observed in re-
sponse to pure tone exposure, indicating a music-specific effect.
Open-field center crossings were increased concomitant with shifts
in music preference, suggesting a potential anxiolytic effect. Thus,
music may offer both a unique window into the emotional state of
mice and a potentially efficient assay for molecular “brakes” on crit-
ical period plasticity common to sensory andhigher order brain areas.

Preference behaviors are shaped early in life and can last a life-
time. From classic work on chick imprinting (1) to drug vul-

nerability in adolescents (2, 3), neural circuits in the developing
brain are especially impressionable to experience. Biases in re-
sponse to acoustic signals with ethological or emotional valence
over environmental noise are particularly important for social,
cultural, and biological fitness. For example, infants will suckle ac-
tively to hear theirmother’s voice over that of another (4) andprefer
speech over nonspeech sounds (5) and native over nonnative lan-
guage (6) as early as 4 d after birth. How and where such enduring
preferences are instantiated in the brain remain largely unknown.
Music is a powerful tool with which to probe acoustic behavior

influenced by exposure during a sensitive period. Early musical
training can improve pitch processing and the remarkable ability of
absolute pitch (7), verbal intelligence, and executive functioning
(8), and may itself induce plasticity (9–12). Compared with infants
without training, those with Kindermusik experience, which fo-
cuses on Western music with duple meter, exhibit a differential
preference for this underlying hierarchical temporal structure (13)
as early as 4 mo of age (14). At 9 mo of age, infants prefer human
singing to instrumental music, even for familiar songs (15).
Music is an extremely complex multimodal but predominantly

auditory stimulus with dynamic changes over time in a number of
features, including frequency, intensity, rhythm, tempo, meter,
and timbre. Although much recent work has demonstrated the
presence of critical periods in the primary auditory cortex in re-
sponse to relatively simple features like tones or frequency
modulation (16, 17), music represents a much more complex
version of the acoustic environment. Furthermore, studies in
humans have revealed that musical processing involves a wide-
spread network of brain structures in addition to auditory cortex,
including the planum temporal, parietal lobe, insula, limbic cir-
cuit, nucleus accumbens, ventral tegmental area, orbitofrontal
cortex, Heschl’s gyrus, premotor cortex, anterior superior-tem-
poral gyrus, frontal lobe, and cerebellum (18).
Importantly, the choice of one type of music over another likely

reflects limbic, decision-making brain regions, such as the pre-
frontal cortex (reviewed in 19), which is known to be engaged

during judgments of kinship and close others later in life (20).
Interestingly, Jouhaneau andBagady (21) demonstrated that Swiss
albino mice exposed to a certain type of music during the period
from postnatal day (P) 10 to P20 later “preferred” that kind of
music when given a choice during adulthood. Those exposed out-
side of that period were indistinguishable from controls, showing
no such preference. Although no biological mechanism was of-
fered, these results suggest that a juvenile plasticity could also
explain the development of higher order features like decision-
making and preference in animal models. Here, we optimized this
behavioral assay to capitalize on recent advances in understanding
of critical period mechanism.
Receptive field properties and tonotopic maps in primary

sensory areas for vision, somatosensation, and audition exhibit
precisely defined critical periods, and specific molecular players
regulating their timing have now been identified (22). Critical
period plasticity is initiated by a late maturation of GABAergic
circuits, particularly those expressing the calcium-binding protein
parvalbumin. Conversely, gradually emerging “molecular brakes”
later in life actively limit plasticity in the adult brain (23). They
include axonal growth-inhibiting factors, such as myelin-signaling
proteins, Nogo and PirB, acting in complex with the Nogo re-
ceptor (NgR) (24), chondroitin sulfate proteoglycans (25), and
epigenetic factors like histone deacetylases (26). It is therefore
possible to reactivate plasticity in adult animals by removing these
brakes with pharmacological or genetic manipulations (25, 26).
It remains to be determined whether these mechanisms regu-

lating plasticity in sensory cortex can be applied to cognitive pro-
cesses, such as preference for complex acoustic signals. The
specific goals of this study were to (i) confirm a “critical period” for
music preference in developing C57BL/6 mice by varying periods
of music exposure, (ii) establish mechanisms underlying closure of
this critical period by lifting of molecular brakes on plasticity in
adulthood, and (iii) examine the medial prefrontal cortex (mPFC)
as a region of interest for circuit changes related to modulation of
preference for music.

Results
Critical Period for Acoustic Preference in Mice. We placed WT
C57BL/6J mice (WT) into an open arena with shelters in opposing
corners (Fig. 1A). These shelters contained bedding material as
well as acoustic stimuli (music) or remained silent. Over the course
of a 3-h testing period, mice typically “explore” the arena actively
(first 30 min; Fig. 1 B and C, Left) and then eventually “dwell” in
a shelter of choice, where they nest (final 30 min; Fig. 1 B and C,
Right). We can use the fact that mice explore the arena during the
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initial 30 min as an “open-field” assay. This classic measure of
rodent anxiety (27) measures general anxiety levels by the number
of center-square crossings (Fig. 1A, dotted) and general activity
levels by measuring total distance moved during the same explo-
ration period (initial 30 min).
To validate our preference arena, we first tested a well-known

anxiety model, in which GAD65, one of the two enzymes that
synthesize GABA, is genetically deleted. In comparison to WT
animals, GAD65−/− mice showed fewer center crossings (Fig. 2B),
confirming their heightened anxiety as measured previously by
reduced center time in standard open-field tests without shelters
(28). In contrast, overall activity levels indicated by distancemoved
during the same period did not differ between GAD65−/− andWT
mice (Fig. 2A).
When acoustic preference was further evaluated based on the

dwelling time spent in shelters during the final 30 min, adult WT
mice exhibited a characteristic “neophobic” response and settled
primarily in the silent shelter (Fig. 2D, Upper, “Naive” bar and
Lower, black trace). To determine whether there is a developmental
plasticity in this preference, we exposedmice to music either at P15
or in adulthood (>P60) for 10 d and tested their preference between
P60 and P90 (Fig. 2C).
Mice exposed to music either before P10 (21) or later as adults

(Fig. 2D,>P60 and blue curve) made a similar choice for silence as
in the naive group. However, animals raised in the presence of
music, independent of the genre, during the third postnatal week
exhibited a preference as adults for the shelter containing the
previously heard music (Fig. 2D, P15–P24 and red curve; P15 vs.
Naive: Kolmogorov–Smirnov test, P < 0.02; P15 vs. >P60: Kol-
mogorov–Smirnov test, P = 0.05). These results support the orig-
inal report in albino mice that acoustic preference for music is
shaped during a brief critical period (21).

Reopening Preference Plasticity in Adulthood. We then examined
whether it is possible to reopen a window of brain plasticity in
adulthood. Based on recent success in primary visual cortex (23),
we focused on possible epigenetic constraints that may limit circuit
rewiring. Ocular dominance plasticity in adult rats is reactivated by
histone deacetylase inhibitors, such as valproic acid (VPA) or tri-
chostatin A (26, 29). These manipulations are well-known to open
chromatin structure, engaging gene expression.Removal ofmyelin-
related signaling by gene-targeted deletion of the NgR (NgR−/−)
also maintains an open-ended critical period in mice (30). Thus,
we assayed both conditions paired with music or typical cage
environments in adult animals (Fig. 3A).
Strikingly, both VPA-treated and NgR−/−mice (>P60) exhibited

a strong preference for the exposedmusic (Fig. 3B, blue curve: VPA
vs. baseline Kolmogorov–Smirnov test, P < 0.01; purple curve:
NgR−/− music vs. baseline Kolmogorov–Smirnov test, P < 0.004).
Saline-treated controls (Fig. 3B, red curve) behaved like naive
adults (Fig. 3B, dashed curves) and maintained a preference for
silence. In contrast, NgR−/− mice kept in soundproof boxes shifted
their preference even further toward silence (Fig. 3B, green curve:
NgR−/− silence vs. baseline Kolmogorov–Smirnov test, P < 0.0001).
Thus, acoustic behavior can be reshaped bidirectionally under these
plastic conditions.

Specificity of Acoustic Preference. Next, we addressed music stimu-
lus specificity. Mice were allowed to choose between the previously
heard music (music 1) and previously unheard music (music 2).
Both VPA-treated and NgR−/− mice showed a preference for the
music to which they had been exposed (Fig. 3C; Kolmogorov–
Smirnov tests, P < 0.05 and P < 0.03 for C57 VPA + music 1 vs.
saline+music 1 andNgR−/−music vs. NgR−/− silence, respectively).
In a subset of NgR−/− mice, further exposure (10 d) to a second

A

C

B

Fig. 1. Measurement of acoustic preference in mice. (A) Open 45-cm by 45-cm arena containing shelters with speakers and nesting material is monitored for
3-h trials. (B) Sample tracking of mice during the first and final 30 min of the acoustic preference tests is shown. For visual clarity, traces were plotted once
every 50 samplings (out of 14 samplings per second) and superimposed on the video image of the arena setup. Dark triangular shadows in the corners of the
background image depict the shelters with different acoustic stimuli. (B and C) (Left) Typically, mice will actively “explore” the arena in the first 30 min, as
indicated by the number of entries into either chamber. (Right) By the final 30 min, most animals indicate their preference (in seconds) by settling into shelters
(“dwell”) for extended periods of time.
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piece of music shifted preference yet again away from the initial
music (Kolmogorov–Smirnov test, P < 0.04).
To determine whether preference shifts required melodic music

or if just any rhythmical sound could result in preference shifts, we
treated WT mice with VPA or saline following the same protocol
(Fig. 2B) but exposed them instead to a repeated 5-Hz train of 7-
kHz tones at 2-s intervals over a similar duration. Unlike VPA-
treated, music-exposed WT mice, tone-exposed mice did not lose
their innate preference for silence despite drug treatment (Fig. 3D;
Kolmogorov–Smirnov test, P > 0.7). This suggests that preference
shifts during reopened plasticity are specific for music.

Neural Substrate for Preference Changes. We next probed neuronal
activation in response to music. We focused on the mPFC and
primary auditory cortex. Immediate early gene cFOS expression in
response to the previously heard music was assayed using separate
sets of NgR−/− and FOS-EGFP (WT) mice. Following the same
procedure as in behavioral experiments (Fig. 3A), WT mice were
treated with either VPA (Fig. 4A) or saline (Fig. 4B) during con-
tinuous music or 7-kHz exposure, whereas NgR−/− mice were ex-
posed either to music or “silence.” Mice were subsequently
euthanized after a 1-h exposure to the previously heard music,
7-kHz tone, or silence (Fig. 4C) and were processed for EGFP
visualization or FOS immunoreactivity.
Both WT mice that had undergone VPA treatment paired with

music (Fig. 4D, WT VPA +Music) and NgR−/− mice exposed to
music (Fig. 4D, NgR−/− Music) displayed increased cFOS expres-

sion in the mPFC in comparison to saline-treated, exposed WT
control (Fig. 4D,WTSaline+Music), silenceWTbaseline (Fig. 4D,
zero line), orNgR−/− silence (Fig. 4D, green) groups (VPA+Music
vs. Saline+Music: Mann–WhitneyU test, P< 0.005; VPA+Music
vs.WTbaseline:Mann–WhitneyU test,P< 0.03;NgR−/−Music vs.
NgR−/− Silence: Mann–Whitney U test, P < 0.003). In contrast,
7-kHz–exposed, VPA-treatedWTmice (Fig. 4D,WTVPA+ 7 kHz)
did not show increased FOS expression in mPFC in comparison
to saline-treated counterparts or no sound baseline (Fig. 4D, zero
line). Also, primary auditory cortex did not show greater FOS
expression in response to the previously heard music despite VPA
treatment and music exposure (Fig. 4E, blue) in comparison to
their saline-treated counterparts (Fig. 4E, red).

Implications for Anxiety. Music is reported to reduce anxiety in
specific situations (“state anxiety”), such as clinical settings (31–
34), and animals exposed to music exhibit anxiolytic effects (35,
36). Instead, there is limited efficacy ofmusic for treating anxiety in
adults, but it may have more potential in children and adolescents
(37, 38). Therapies like music exposure may be more effective,
given a certain amount of flexibility in the brain.
We thus examined the relationship between music combined

with reopened plasticity on anxiety and overall activity level.
Center-square crossings during the first 30 min were notably
increased only under conditions of reopened plasticity (Fig. 5A;
VPA + Music vs. Saline + Music: Mann–Whitney U test, P <
0.05; NgR−/− vs. WT >P60: Mann–Whitney U test, P < 0.03;

A C

B

D

Fig. 2. Juvenile window for shaping acoustic preference. (A and B) To validate the anxiety measure in our preference test setup, a mouse model of anxiety (28),
GAD65−/− mice, were tested and compared withWT (C57BL6/J) mice. GAD65−/− mice (dashed box) show a lower number of center-square crossings (B) during the
first 30 min of the preference test (mean ± SEM; *Mann–Whitney U test, P < 0.05), whereas they show a similar distance moved during this time as WT mice (A).
(C) Critical period for music preference in mice. (D, Upper) Percentages of naive WT mice, WT mice with exposure to music during P15–P24, or WT mice with
exposure to music at >P60 that show a preference for each shelter during the final 30 min of a music vs. silence test. (D, Lower) Cumulative frequency distribution
of each experimental group plotted as a function of preference for silence. The majority of naive WT mice choose the silent shelter (black curve, n = 18). This
behavior can be modified by exposure to music only during a critical period in the third postnatal week (P15–24: red curve, n = 26; >P60: blue curve, n = 33) (21).
The abscissa indicates a preference for the silent chamber, which was calculated by the percentage of time spent in the silent chamber over the total time spent in
both chambers (final 30 min). *Kolmogorov–Smirnov test, P < 0.05.
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NgR−/− vs. nonexposed NgR−/− control (zero line): Mann–Whitney
U test, P < 0.02). When juvenile WT mice were exposed to music
at P15 and examined for center-square crossings in adulthood,
they showed similarly increased crossings in comparison to non-
exposed controls (Mann–Whitney U test, P < 0.01) as well as
in comparison to normal WT mice exposed as adults (>P60;
Mann–Whitney U test, P < 0.05). On the other hand, WT mice
with VPA treatment paired with 7-kHz exposure did not show
increased center-square crossing in comparison to nonexposed

conditions (zero line) or saline-treated WT mice paired with
7-kHz exposure.
To test whether increased center-square crossing in juvenile or

reopened plasticity conditions was a mere reflection of increased
activity, we measured overall distance traveled during the same
exploration period (first 30 min) in the preference arena for each
test. Unlike center-square crossings, overall distance moved was
no different between plastic conditions and their corresponding
controls (Fig. 5B).

A

B

C D

Fig. 3. (A) Reactivation of critical period for music preference. Adult (>P60) WT mice pretreated with VPA for 2 d or NgR−/− mice were passively exposed
to music and tested for acoustic preference (as in Fig. 1) before and after exposure. (B) Note the typical preference for silence (dashed and red curves; n =
58, n = 24, and n = 19 for naive WT, NgR−/− baseline, and saline WT mice, respectively) is largely shifted in favor of exposed music in the VPA and NgR−/−

groups (blue and purple curves; n = 20 and n = 12 mice, respectively). Conversely, NgR−/− mice housed in silence prefer the silent shelter even more strongly
(green curve; n = 11 mice). (C) Specific preference for the previously heard music over previously unheard music in mice with reopened juvenile plasticity.
The cumulative frequency distribution of each experimental group is plotted as a function of preference for previously heard music (music 1) in WT and
NgR−/− groups. Adult WT mice with VPA treatment paired with music exposure (blue) show a preference for the music 1 compared with saline-treated
controls (red; Kolmogorov–Smirnov test, P < 0.05). In comparison to the NgR−/− silence group (green), the NgR−/− group exposed to music 1 (purple) shows
a preference for music 1 (NgR−/− music 1 vs. NgR−/− silence; Kolmogorov–Smirnov test, P < 0.03). (D) Preference shift was not observed in WT mice with VPA
treatment combined with 7-kHz tone exposure following the same procedure as music exposure in A (n = 19 saline + 7-kHz vs. 27 VPA + 7-kHz tone-
exposed WT mice). *P < 0.05, Kolmogorov-Smirnov test.
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Discussion
Although the hearing range of mice and humans is distinct, 1–100
kHz and 20 Hz to 20 kHz, respectively (39), we found that music
created for the human ear can also lead to behavioral changes in
mice. Our results demonstrated that the acoustic environment
present during an open critical period can shape mPFC response.
Molecular factors known to limit plasticity in sensory cortex could
thus be tapped to alter music preference in adulthood. To our
knowledge, this is the first report of restoring a juvenile form of
brain plasticity to this circuit.
It is unknown what features of music, such as timbre, tempo,

key, modulating frequency, rhythm, or some combination thereof,
are integral to its efficacy in mice. Complex acoustic stimuli like
music robustly engage multiple brain regions beyond primary
sensory areas, including centers for arousal, emotion, and reward
(40). It has been suggested that neural processing and perception

of music in animals is different from that of humans in various
aspects, such as processing of tonal relations (19), absolute pitch
(41), and detecting mistunings within complex harmonics (41).
However, certain aspects reportedly show similarity to humans,
such as processing of melodic contour (42) and speaker variability
in phonetic boundaries (43, 44).
Whether the development of music preference under plastic

conditions would apply beyond the genres used in the present
study remains to be elucidated. Some types of music influence
rodent social behavior (45) and discrimination performance (46),
particularly if timbre cue of music is present (47). Importantly,
our results largely confirm that when pulsed tones are used with
or without patterns, this effect is not observed (reviewed in 48).
The specific qualities in the music stimulus that must be paired
with active plasticity for achieving preference shifts can now be
explored more systematically.

A B C

D E

WT WT

Fig. 4. Music engages the adult mPFC during reopened plasticity. (A–C) Representative response in FOS-EGFP mice of mPFC (Upper and Middle) and primary
auditory cortex (Aud. ctx; Bottom) to brief exposure to the music (Upper), 7 kHz (Middle), or silence (C, baseline) previously heard with VPA (A) or saline
(B) treatment. (Scale bar, 100 μm.) (D) Quantification of FOS+ cells in the mPFC for WT groups in A–C and NgR−/− mice previously exposed either to music
or silence as in behavioral experiments. Note the increased neuronal response in the mPFC of VPA-treated, music-exposed WT, and NgR−/− music groups (n = 9
VPA +music vs. 8 saline +music: Mann–Whitney U test, **P < 0.005; VPA vs. n = 5 baseline (zero line): Mann–Whitney U test, §P < 0.03; n = 8 NgR−/− music vs. 7
NgR−/− silence: Mann–Whitney U test, **P < 0.003). In contrast, WT mice exposed to 7-kHz tones did not show an increased FOS response in the mPFC re-
gardless of VPA (A, Middle) or saline (B, Middle) compared with silence (C, Middle; zero line) (n = 6 in each group). (E) Quantification of FOS+ cells in primary
auditory cortex of WT mice in A–C (Lower). Unlike in the mPFC, VPA treatment did not yield differential FOS responses to music in comparison to saline-
treated, music-exposed controls.
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Our study implicates mPFC activation in preference shifts,
which goes beyond basic receptive field properties traditionally
shown to exhibit a critical period in the primary auditory cortex
of cats (49, 50), rats (51, 52), and mice (16) or in the auditory
midbrain in rats (53), chinchillas (54), and barn owls (55, 56). Our
task potentially offers further insight into higher order brain pro-
cessing of complex acoustic stimuli, such asmusic. ThemPFC serves
an important function in working memory (57), attention (58), and
sensory gating (59). Its maturation is slow (3), which coincides with
slow development in working memory (60). Conversely, impaired
NgR signaling in the mPFC has been linked to psychoses (61),
perhaps reflecting excessive circuit plasticity into adulthood.
Future work will investigate chemical ablation or optogenetic

inactivation of the mPFC and whether overtly similar behaviors
by VPA and NgR−/− could be explained by a common mechanism.
Moreover, impaired synaptic rewiring during circuit development
could result in long-term deficits. For example, input-specific
synaptic plasticity in frontal cortex is impaired in neurodevelop-
mental disorders (62), and axonal organization and development
in the prefrontal cortex are disrupted in autism (63). Hypercon-
nectivity and slow synaptic dynamics are observed in the mPFC of

the Fmr1−/− mouse, a model of fragile-X syndrome, autism, and
mental retardation (64). Notably, this delay in synaptic maturation
arises during the second to third postnatal week of development,
largely coinciding with the critical period observed here for de-
veloping acoustic preference.
Strikingly, the same time period (between P15 and P20) is also

reported to be a critical period for shaping anxiety circuits (65).
Knocking out 5-hydroxytryptamine (5-HT) 1A receptors increa-
ses anxious behavior, which is rescued by conditional reexpression
of postsynaptic 5-HT1A receptors by P15 (but not after P21).
Using fluoxetine to inhibit 5-HT transport from P4 to P21 showed
supporting results (66). Music therapy is reported to produce
anxiolytic effects in various clinical settings, such as in perioper-
ative patients, patients with dementia, or mechanically ventilated
patients (18, 31, 34, 67). The relationship between music, anxiety,
and plasticity and a potential mediating role of the mPFC un-
derlying this relationship warrants further investigation.
At a molecular level, WT mice exposed to music from birth (or

prenatally) show increased BDNF levels, unlike those exposed
only in adulthood (>P60) (35, 68). Instead, transgenic animals
(BDNFMet/Met) with genetically low levels of BDNF exhibit ab-
normally high anxiety levels (36). Exposing them to music as
adults results in an up-regulation of BDNF in the prefrontal cortex,
amygdala, and hippocampus, as well as reduced anxious behavior.
It remains to be seen if anxiety levels might remain low in our
plastic mice without the presence of familiar music at the time of
testing. It is conceivable that a “dose” of familiarmusic is necessary
to ameliorate anxiety acutely (67). More standard anxiety tests,
such as the elevated plus maze test or traditional open-field test,
should be measured with or without ambient music to confirm the
open-field measures.
Overall, our task reveals an innate behavioral preference that is

established during a critical period shortly after hearing onset in
mice (21), requiring no training and free of confounding olfactory,
visual, or tactile cues. In songbirds, exposure to a tutor’s song
during a sensitive developmental phase leads both sexes to prefer
the songs of the tutor over other unfamiliar songs when tested in
adulthood (69). Moreover, the mPFC in humans responds to close
others (i.e., kinship) (20). Thus, our paradigm opens exciting
possibilities for probing the brain state of mice in response to more
ethologically relevant acoustic environments (e.g., ultrasonic vo-
calizations) experienced in their youth.

Materials and Methods
Animals. Adult C57BL/6J mice were maintained with same-sex littermates in
cages with bedding material and ad libitum access to water and food under
a 12:12-h light/dark cycle. NgR−/− KO mice (back-crossed onto C57BL/6 mice
for >10 generations) were provided by Z. He (Children’s Hospital Boston)
from original breeders produced by Tessier-Lavigne and colleagues (70).
GAD65−/− and FOS-EGFP breeders were provided by K. Obata (RIKEN Brain
Science Institute, Saitama, Japan) (71) and A. Barth (Carnegie Mellon Uni-
versity, Pittsburgh, PA) (72), respectively, and kept under the same envi-
ronmental conditions. Animal housing and experimental procedures were
approved and followed the guidelines of the Harvard University Institutional
Animal Care and Use Committee (AEP28-19).

Two-Choice Preference Setup. The acoustic preference test was conducted
using a Phenotyper 4500 (Noldus Information Technology), a 45-cm (width) ×
45-cm (depth) × 45-cm (height) open arena with clear plastic walls viewed by
means of a ceiling-mounted video camera and infrared lights and filters.
Two diagonally opposing corners of the Phenotyper 4500 were chosen
randomly and furnished with red, opaque plastic shelters bearing a side
entrance. A small loudspeaker (1.6-cm diameter × 1-cm height) was installed
on the ceiling of each shelter (6 cm high), and nesting and bedding materials
were provided at the bottom (Fig. 1A). To minimize ambient noise in-
terference, the entire test setup was placed in an anechoic sound isolation
chamber [inner dimensions: 55 cm (width) × 49 cm (depth) × 66 cm (height);
Industrial Acoustics Company] with an ambient light source (8 W).

Each test was initiated by placing mice in the center of the arena and was
monitored for 3 h consecutively. The animals’ behavior was recorded by

A

B

Fig. 5. Potential anxiolysis by music exposure reflects juvenile brain plas-
ticity. (A) Increased number of center-square crossings (Fig. 1A, dashed box),
indicating reduced anxiety (70), during the first 30 min measured in adult
WT mice previously exposed to music at P15–P24 (light gray bar, n = 26)
suggests anxiolysis in comparison to mice exposed later at >P60 (n = 18) or
naive controls (zero line, n = 18). Reduced anxiety was also observed in adult
NgR−/− mice (dark gray bar, n = 15) after exposure to music (in comparison to
naive NgR−/− mice; zero line, n = 44) and in adult WT mice after VPA paired
with music (black bar, n = 20) compared with saline-treated counterparts
exposed to music (white bar, n = 19) or naive WT controls (zero line, n = 58).
Note that a similar duration of tone exposure (7 kHz) in adult WT mice
produced no anxiolytic effect despite VPA treatment (hatched black bar, n =
27) in comparison to saline-treated counterparts also exposed to 7 kHz
(hatched white bar, n = 19). *P < 0.05 vs. non–music-exposed controls. (B)
Overall distance traveled during the same first 30 min is no different across
groups, regardless of exposure to music or 7-kHz tones.
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video camera, tracked, and analyzed using Ethovision XT software (Noldus
Information Technology). Tests were conducted between 0900 and 1700
hours during the light phase to promote mouse dwelling in the shelters. All
components of the test setup were wiped clean twice with Clidox solution,
followed by 70% ethanol/30% purified water, and air-dried between each
trial. The positions of shelters and sound playback were randomized on
each trial.

Behavioral Procedure. For the reopening of critical period experiments at
P60, WT or NgR−/− mice were tested for acoustic preference to approach
(first 30 min) or dwell (final 30 min) in the two-choice acoustic preference
setup (Fig. 1A). One shelter played music (either first movement from
Beethoven’s symphony no. 1 or no. 9, or Antonio Carlos Jobim’s “Agua de
Beber”) looped continuously throughout the 3-h test duration, whereas
the other shelter remained silent (music–silence test). Testing was con-
ducted inside a sound isolation chamber, and the sound level at the en-
trance to the “silent” shelter was confirmed by a sound pressure level
meter to be at the same level as background sound levels without
music playback.

Mice were then housed with same-sex littermates in a sound isolation
chamber [58.4 cm (width) × 40.6 cm (depth) × 35.6 cm (height); Industrial
Acoustics Company] with ad libitum access to water and food under a 12:12-
h light/dark cycle. One week after initial testing, adult C57BL/6 mice were
injected (i.p.) with either VPA (200 mg·kg−1; Sigma–Aldrich) dissolved in
saline or the same volume of saline every 12 h for 4 d. After the first 2 d of
injections, they were further exposed to music (one of the three pieces
above), which was played through two free-field loudspeakers [minimum
sound pressure level (SPL) of 69.5 ± 2.5 dB to maximum SPL of 78 ± 1.5 dB]
looped for 24 h each day over 4 d. In the case of 7-kHz control experiments,
mice were exposed to looped playback of 5-Hz trains of 7-kHz tone in-
terspersed with 2 s of silence.

In the case of adult NgR−/− mice, animals were randomly divided into two
groups 1 wk after initial testing and placed in the sound isolation chamber
with littermates and ad libitum access to food and water. One group was
exposed to music, whereas the other was kept in silence. The music pieces
and sound levels were the same as those for the WT VPA experiments above.
Exposure was done between 0900 and 1700 hours each day for 7 d.

Three to four days after exposure to music or silence, both VPA and NgR−/−

mice were retested in the two-choice preference setup with one shelter
playing previously heard music and the other shelter silent (music–silence
retest). One further week after the music–silence retest, some mice were
tested a third time on a two-music preference between a shelter playing
previously heard music and one with previously unheard music (Jobim or
Beethoven, or vice versa). In a subset of NgR−/− mice 2 wk after the two-
music test, those previously exposed to music were reexposed for 7 d to
previously unheard music using the same procedure as before, after which
they were tested on a two-music test between the two pieces they had
heard most recently vs. previously.

To probe a developmental window (21), C57BL/6 mice were exposed at
P15 with their dam or after P60 (as for adults above) to music for 10 d in the
anechoic sound isolation chamber with ad libitum access to water and food.
Subsequently, the P15 group was weaned and housed in a normal mouse

housing facility with same-sex littermates until behavioral testing. Music–
silence testing was performed between P60 and P90.

Data Analysis. To assay preference, time spent in each shelter during the final
30 min was measured. Mice spending most of their time in open areas within
the test arena but outside either shelter were labeled as having made “no
choice” (Fig. 2D) and dropped from further analysis. Preference for silence or
for music 1 was calculated, respectively, as 100 × (time in silent shelter/total
time in both shelters) or 100 × (time in music 1 shelter/total time in both
shelters). Overall activity was measured by distance (cm) moved during the
first 30 min (i.e., exploration phase; Fig. 1 B and C). Anxiety was measured as
an inverse of the number of crossings within the central square of the entire
arena within the first 30 min of each trial. Groups of WT and NgR−/− mice
were tested for anxiety with or without previous music or 7-kHz exposure
combined with VPA or saline treatment (for WT) and compared within and
between groups. Kolmogorov–Smirnov tests were performed for group
comparisons in preference tests. Wilcoxon signed rank tests were used to
compare before/after measures, and Mann–Whitney U tests (for data with
nonnormal distributions) and t tests (for data with Gaussian distributions)
were conducted for comparisons of two independent samples. Statistical
analyses were two-tailed comparisons using SYSTAT 13 (Cranes Software
International) or GraphPad Prism 4.

Visualizing FOS+ Cells. FOS-EGFP mice were injected with either VPA or saline
following the same procedure as for the behavioral experiments above for 4 d.
Two days after the first injection, mice were exposed to music or 7 kHz for 4 d
following the same procedure and conditions as in the behavioral experiments.
NgR−/− mice were similarly exposed either to music or silence following the
same procedure and conditions as in the behavioral experiments. At 3–4 d after
the end of the exposure, FOS-EGFP or NgR−/− mice were perfused after 1 h of
exposure to previously heard music, 7 kHz or silence (Fig. 4 A–C). Brains were
removed after perfusion and then postfixed overnight at 4 °C.

FOS-EGFP brains were sectioned coronally, and the mPFC and primary
auditory cortex were visualized; immunofluorescence imaging (at 488 nm)
was performed on a confocal laser-scanning microscope (Olympus LX81 with
Fluoview FV1000 scanner). Images were captured at a magnification of 20×
using Fluoview (v1.3a). FOS+ cells were analyzed with ImageJ (National
Institutes of Health) using the same threshold across sections and automatic
particle count function with the same specific size and circularity settings.
Brain sections of NgR−/− mice were blocked overnight at 4 °C with 0.8%
Triton X-100 and 20% BSA in PBS labeled with primary antibody against FOS
(molecular probes, 1:1,000) overnight at 4 °C and secondary antibody con-
jugated with Alexa Fluor 488 or 546 (1:1,000). NgR−/− sections were visual-
ized, and FOS+ cells were analyzed following the same procedures as FOS-
GFP sections.
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